Robust Extraction and Analysis Towards Complete 3D Tensor Field Topology
نویسندگان
چکیده
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the topological analysis of 3D symmetric tensor fields focus on the local behaviors of tensor fields at degenerate points, which usually form curves. In this paper, we make a number of observations about tensor field topology that are more global in nature. For instance, a degenerate curve can be a knot, and two degenerate curves may be linked. We explore the conditions under which this might occur. In addition, we introduce the notion of eigenvalue manifold which provides a more global description of tensor field topology. As part of our investigation, we include additional tensors into tensor field topology, such as the boundary between the linear and planar types of tensors, as well as traceless tensors. Robust extraction of degenerate curves is a challenging task, despite recent progress. We convert the problem of finding degenerate curves into solving a system of algebraic equations. This approach allows us to borrow techniques from the computer-aided design (CAD) community as well as the algebraic geometry community. The end result is a two-step pipeline that first locates mesh cells in which degenerate points can occur. Existing methods are then used to extract the degenerate curves inside these cells. This approach provides the guarantee that no cells containing a degenerate curve will be missed due to numerical issues with existing degenerate curve extraction methods. We also find the surface-type of tensor field topology using this approach. Finally, we apply our analysis to a simulated seismic wave field propagation from an earthquake as well as a selection of fluid flow data sets. We describe the reaction and resulting insights from domain experts in the fields of fluid mechanics and seismology.
منابع مشابه
Complete Tensor Field Topology on 2D Triangulated Manifolds embedded in 3D
This paper is concerned with the extraction of the surface topology of tensor fields on 2D triangulated manifolds embedded in 3D. In scientific visualization topology is a meaningful instrument to get a hold on the structure of a given dataset. Due to the discontinuity of tensor fields on a piecewise planar domain, standard topology extraction methods result in an incomplete topological skeleto...
متن کاملBeyond Topology: A Lagrangian Metaphor to Visualize the Structure of 3D Tensor Fields
Topology was introduced in the visualization literature some 15 years ago as a mathematical language to describe and capture the salient structures of symmetric second-order tensor fields. Yet, despite significant theoretical and algorithmic advances, this approach has failed to gain wide acceptance in visualization practice over the last decade. In fact, the very idea of a versatile visualizat...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملRobust Estimation of Curvature Information from Noisy 3D Data for Shape Description
We describe an effective and novel approach to infer sign and direction of principal curvatures at each input site from noisy 3D data. Unlike most previous approaches, no local surface fitting, partial derivative computation of any kind, nor oriented normal vector recovery is performed in our method. These approaches are noise-sensitive since accurate, local, partial derivative information is o...
متن کاملEfficient 3d Modeling for Historical Structure by Image Sequences Analysis
In order to perform object modelling by using images processing procedures, line or feature extraction and stereo matching will be performed in general. However, there are some issues of efficient 3D modelling for historical structure. In particular, efficient line matching for reconstruction of objects is needed to be resolved. With this objective, this paper investigates a robust line matchin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014